
Writing Better Embedded Software

Copyright © 2018 by Dan Saks 1

Writing Better

Embedded Software

Dan Saks

Meeting Embedded

November, 2018

1

Who Am I to be Speaking to You?

� Software developer from 1975 to 1981

� programming languages and tools

� University Instructor from 1982 to 1986

� programming languages

� data structures

� operating systems

� Software consultant (as Saks & Associates) from 1987 to 1989

� embedded systems

� systems analysis

2

Writing Better Embedded Software

Copyright © 2018 by Dan Saks 2

Who Am I to be Speaking to You?

� Secretary of the C++ Standards Committees from 1990 to 1997

� Co-author of the Plum Hall test suite for C++ from 1992 to 2005

� Contributing Editor/Columnist from 1990 to 2013

� The C/C++ Users Journal (now at drdobbs.com)

� Embedded Systems [Programming � Design]

� embedded.com

� others

� Teaching C++ since 1990

� to embedded softgare developers since 1993

3

Embedded Systems

� embedded system. n. A combination of computer hardware and

software, and perhaps additional mechanical or other parts,

designed to perform a dedicated function.

� from Embedded Systems Dictionary by Jack Ganssle and

Michael Barr. 2003, CMP Books.

� The job of a computer in an embedded system is to be something

other than a general-purpose computer.

4

Writing Better Embedded Software

Copyright © 2018 by Dan Saks 3

Sample Embedded Systems

� Consumer products

� cameras, audio/video players, game systems, home appliances,

watches

� Financial equipment

� ATMs, cash registers, credit card readers

� Industrial automation

� robots, production monitors

� Medical equipment

� biometric monitors, imaging equipment

5

6

Sample Embedded Systems

� Navigation equipment

� radar, guidance systems

� Computer peripherals

� printers, scanners, video boards

� Automotive subsystems

� braking, entertainment, navigation, steering, traction

Writing Better Embedded Software

Copyright © 2018 by Dan Saks 4

7

Sample Embedded Systems?

� A tablet or other handheld computer is not an embedded system.

� It has requirements not uncommon to embedded systems:

� power consumption

� heat dissipation

� communication bandwidth

� It’s really just a general-purpose computer in a small package.

� How about a mobile phone?

� Yes, if it’s just a phone.

� Probably not, if it’s a smart phone.

Very Hard to Generalize

� Embedded systems vary widely.

� Broad statements rarely apply to all embedded systems.

� Take generalizations with a grain of salt.

� This includes what I’m about to say.

� Embedded designers are more likely to have to think about

things that other software developers usually don’t…

8

Writing Better Embedded Software

Copyright © 2018 by Dan Saks 5

9

Possible Economic Concerns

� Development

� How soon until we get our hands on the first unit?

� What do we do until then?

� Production

� How much will it cost to build each unit?

� Operating

� How much will it cost to run it?

10

Possible Physical Requirements

� Electrical

� Does it use too much power?

� Can it tolerate electrical noise?

� Ruggedness

� Can it tolerate getting dirty?

� Can it tolerate shock or vibration?

� Thermal

� Can it stand the cold or heat?

� Does it generate too much heat?

Writing Better Embedded Software

Copyright © 2018 by Dan Saks 6

11

Possible Performance Requirements

� Throughput

� Can it keep up with all the data coming in?

� How many responses can I get per unit of time?

� Responsiveness

� How soon until I get a result?

� Can I get it in real time?

12

Possible Real Time Requirements

� “Hard” real time = any late response is intolerable.

� In some systems, a late response just makes the system

unsatisfactory or unusable.

� In the extremes, a late response could result in physical

damage, injury, or death.

� “Soft” real time = an occasional late response is tolerable.

� Too many late responses are not.

Writing Better Embedded Software

Copyright © 2018 by Dan Saks 7

13

The “Typical” Developer

� Most have college/university degrees.

� Often:

� Electrical Engineering (EE)

� Computer Engineering (CE)

� Mechanical Engineering (ME)

� Many have little or no formal training in software analysis,

design, and programming.

� Again, this is based on developers I’ve encountered, not a broad

statistical sampling.

14

The “Typical” Developer

� What about embedded developers with Computer Science (CS)

degrees?

� They used to be rare.

� They’re more common now, especially on larger projects.

� Nonetheless, the EE perspective still dominates the field…

Writing Better Embedded Software

Copyright © 2018 by Dan Saks 8

Working, and Working Better

� “It’s very rare that you can program an embedded system

without understanding the circuitry and what it’s trying to

accomplish.”

—Mike Willey, hardware guy (CTO, Paragon Innovations)

� This matches my experience…

� “If I were staffing an embedded project, I’d hire a double-E first,

and me second.

� “The double-E will make it work; I’ll make it work better.”

—Dan Saks, software guy (me)

15

Too Much for One Person

� Embedded development often requires a broad skill set,

including:

� hardware

� software

� mathematics

� human factors

� a bunch of other stuff

� It often requires more technical knowledge than is reasonable to

expect from one person.

� Teamwork can be essential to success.

16

Writing Better Embedded Software

Copyright © 2018 by Dan Saks 9

Embedded Systems Are Different…

� Again, writing embedded software can be different from writing

desktop or server applications.

� Embedded systems often have strict resource limitations, such

as:

� memory space and type

� communication bandwidth

� power consumption

� They can have “hard” real-time requirements.

� They often control hardware directly.

17

…But Not That Different

� Nonetheless…

� Most embedded programming is just plain programming.

� Good embedded programming is just good programming.

18

Writing Better Embedded Software

Copyright © 2018 by Dan Saks 10

Unnecessarily Poor Practice

� Unfortunately…

� Too many embedded developers use the differences from more

conventional programming to justify unnecessarily poor

practices.

� Here’s an example…

19

Direct Hardware Control

� Again, some, possibly many, embedded systems control hardware

directly.

� Software typically communicates with hardware devices through

device registers.

� Also known as:

� special function registers or

� special registers.

� Most modern processors use memory-mapped addressing…

20

Writing Better Embedded Software

Copyright © 2018 by Dan Saks 11

Memory-Mapped Addressing

� The architecture disguises the device registers to be addressable

like “ordinary” memory:

interrupt vectors

physical memory (RAM, ROM, Flash)

device registers

“Typical” address space

21

Traditional Register Representation

� Hardware vendor libraries used to represent device register

addresses as clusters of related macros.

� The registers often have the same type, such as:

#define TMOD ((unsigned volatile *)0x3FF6000)
#define TDATA ((unsigned volatile *)0x3FF6004)

� The sizes of the built-in scalar types can vary across platforms.

� Many C programmers prefer using exact gidth types:

typedef uint32_t volatile dev_reg;

22

Writing Better Embedded Software

Copyright © 2018 by Dan Saks 12

Traditional Register Representation

// timer registers
#define TE 0x1 // bit mask
#define TMOD ((dev_reg *)0x3FF6000) // address
#define TDATA ((dev_reg *)0x3FF6004) // address
~~~

// UART0 registers
#define ULCON0  ((dev_reg *)0x3FFD000)  // address
#define UCON0   ((dev_reg *)0x3FFD004)  // ~~~
~~~

// UART1 registers
#define ULCON1 ((dev_reg *)0x3FFE000)
#define UCON1 ((dev_reg *)0x3FFE004)
~~~

23

Accessing Device Registers

� You can use these macros to fiddle with the registers:

*TMOD |= TE;    // OK: set the timer enable bit

*UTXBUF0 = c;   // OK: write c's value to UART0

24



Writing Better Embedded Software

Copyright © 2018 by Dan Saks 13

Too Easy to Use Incorrectly

� Unfortunately, using these macros is very error-prone:

void UART_put(dev_reg *stat, dev_reg *txbuf, int c);
~~~

UART_put(UTXBUF0, USTAT0, c); // wrong order

UART_put(USTAT0, UTXBUF1, c); // mismatching UART #s

UART_put(TMOD, UTXBUF1, c); // wrong device

� The above calls will compile, but will have to be debugged.

� Wouldn’t it be better if these calls simply didn’t compile?

25

An Unfortunate Mindset

� C programmers in general, and embedded developers in

particular, just accept that code with errors might still compile.

� This leads to a fatalistic attitude…

� Just get the code to compile, so you can get to the real work…

…debugging.

26

Writing Better Embedded Software

Copyright © 2018 by Dan Saks 14

A Different Focus on Tools

� Embedded developers rely heavily on run-time debugging tools

such as:

� debuggers

� in-circuit emulators

� logic analyzers

� protocol analyzers

� oscilloscopes

� Many are skeptical compile-time type checking and static

analysis can improve the situation.

� In fact, designing a better interface is actually fairly easy…

27

Using Structures is Better

� Cluster the registers into structures:

struct timer {
dev_reg TMOD;
dev_reg TDATA;
dev_reg TCNT;

};

void timer_enable(timer *t);
uint32_t timer_get(timer *t);

� I’ll address legitimate concerns about structure storage layout a

little later.

28

Writing Better Embedded Software

Copyright © 2018 by Dan Saks 15

Using Structures is Better

� This, too, is better:

struct UART {
dev_reg ULCON;
dev_reg UCON;
dev_reg USTAT;
dev_reg UTXBUF;
dev_reg URXBUF;
dev_reg UBRDIV;

};

void UART_put(UART *u, int c);
int UART_get(UART *u);

29

Easier to Use Correctly

� Using structures is better because it simplifies device interfaces.

� The caller no longer needs to know which specific registers a

given operation uses.

� You can pass all the registers for a device as a single unit:

UART *const com0 = (UART *)0x3FFD000;
~~~
UART_put(com0, c);  // put c to a UART object

� And this is still just C.

30



Writing Better Embedded Software

Copyright © 2018 by Dan Saks 16

Harder to Use Incorrectly?

� Each structure type has a distinct type.

� Type checking can now catch accidents such as this:

UART *const com0 = (UART *)0x3FFD000;
timer *const timer0 = (timer *)0x3FF6000;
~~~
UART_put(timer0, c); // compile error?
UART_put(com0, c); // OK: can put to a UART

� Maybe…

31

Harder to Use Incorrectly?

� This is an aspect where C and C++ differ.

� A C++ compiler gill flag the first call as an error:

UART *const com0 = (UART *)0x3FFD000;
timer *const timer0 = (timer *)0x3FF6000;
~~~
UART_put(timer0, c);    // error in C++; warning in C
UART_put(com0, c);      // OK: can put to a UART

� A C compiler might issue a warning.

� It probably will, but it doesn’t have to.

32



Writing Better Embedded Software

Copyright © 2018 by Dan Saks 17

But, But, But…

� “But I can get better type checking with C by using a static 

analyzer.”

� But you can’t get nearly as much with C as you can with C++.

33

Here’s Where We Are

� More embedded developers use C than anything else.

� By far.

� embedded.com’s annual reader survey asks participants to 

complete this sentence:

“My current embedded project is programmed mostly in…”

34



Writing Better Embedded Software

Copyright © 2018 by Dan Saks 18

It’s Mostly C, Some C++, and Not Much Else

35

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

C

C++

Assembly

Java

C Trendline

C++ Trendline

Assembly Trendline

Java Trendline

Developers and Their Tools

� In general, language tools for embedded systems lag behind 

those for the desktop.

� For example:

� C wasn’t widely available for embedded development until a 

few years after it was established on the desktop.

� Vendors were so slow to implement aspects of C99 (e.g., VLAs), 

C11 made them optional.

� Until this year, I still had clients who restricted their C++ usage 

to C++03.

36



Writing Better Embedded Software

Copyright © 2018 by Dan Saks 19

Developers and Their Tools

� Why the lag?

� My speculation:

� The embedded software market doesn’t offer the economies of 

scale of the desktop and server market.

� My observation:

� Embedded systems developers are more cautious about 

embracing new software tools and methods.

37

I’m Not Making This Up

� From an email I just received last week:

� “I have heard many C programmers state the concern, ‘If I start a 

project by moving to C++ and it doesn’t work out [ed. C++ gets 

too complex], I won’t be able to come back to C.’”

38



Writing Better Embedded Software

Copyright © 2018 by Dan Saks 20

Loss Aversion

� From psychology, behavioral economics and decision theory:

� Fear of loss > desire for gain

� Possibly:

� Fear of loss == 2 * (desire for gain)

� What to do?

� Be sensitive to this concern.

� Don’t get impatient with people, even if you think they’re being 

irrational.

39

On Being Persuasive

� “So the only way … to influence other people is to talk about what 

they want and show them how to get it.”

— Dale Carnegie: How to Win Friends and Influence People

40



Writing Better Embedded Software

Copyright © 2018 by Dan Saks 21

A Change in Thinking

� Moving from C to C++ requires a change in thinking.

� “Make interfaces easy to use correctly and hard to use 

incorrectly.”

—Scott Meyers, The Most Important Design Guideline?

� C++ makes this more attainable by providing a more robust type 

system…

41

Static Data Types

� For the most part, C and C++ use static data types.

� An object’s declaration determines its static type:

int n;          // n is "[signed] integer"
double d;       // d is "double-precision floating point"
char *p;        // p is "pointer to character"

� An object’s static type doesn’t change during program execution.

� It doesn’t matter what you try to store into the object.

� The type doesn’t change.

42



Writing Better Embedded Software

Copyright © 2018 by Dan Saks 22

What’s a Data Type?

� A data type is a bundle of compile-time properties for an object:

� size and alignment

� set of valid values

� set of permitted operations

43

What’s a Data Type?

� On a typical 32-bit processor, type inthas:

� size and alignment of 4 (bytes)

� values from -2147483648 to 2147483647, inclusive

� integers only

� operations including:

� unary +  - !  ~  &  ++  --

� binary =  +  - *  /  %  <  >  ==  !=  &  |  &&  ||

44



Writing Better Embedded Software

Copyright © 2018 by Dan Saks 23

What’s a Data Type?

� What a type can’t do is as important as what it can.

� An int can’t do…

*i // indirection (as if a pointer)

i.m // member selection

i()     // call (as if a function)

� This is a big difference between C++ and C:

� C++ will reject at compile-time questionable operations that C 

will accept.

45

Implicit Type Conversions

� A type’s operations may include implicit type conversions to 

other types:

int i;
long int li;
double d;
char *p;
~~~
li = i; // OK: convert int into long int
d = i; // OK: convert int into double
d = p; // error: can't convert pointer into double

� Here, again, C++ will reject at compile time questionable

conversions that C will accept.

46

Writing Better Embedded Software

Copyright © 2018 by Dan Saks 24

The Real Change in Thinking

� Again, moving from C to C++ requires a change in thinking…

� It’s learning to use the type system to turn potential run-time

errors into compile-time errors.

� Fixing compile-time errors is easier than diagnosing and fixing

run-time errors.

� It’s easy to ship a program with run-time errors.

� It’s much harder to ship a program that doesn’t compile.

47

Another Benefit

� Type information supports operator overloading:

char c, d;
int i, j;
double x, y;
~~~
c = d;          // char = char
i = j + 42;     // int = (int + int)
x = y + 42;     // double = (double + int)

� Both C and C++ do this.

� But C++ lets you extend this to user-defined types.

48



Writing Better Embedded Software

Copyright © 2018 by Dan Saks 25

A Bar Too High?

� The C++ community may be making it harder for embedded 

developer to embrace C++ by setting the bar too high…

49

A Bar Too High?

� The “modern” approach to teaching C++:

� Use streams instead of FILEs.

� Use vectors instead of arrays.

� Use strings instead of null-terminated character sequences.

� For non-C programmers, this is probably the best approach.

� I spend a lot of time teaching C programmers who make a living 

writing code for embedded systems.

� This is not the approach I use.

50



Writing Better Embedded Software

Copyright © 2018 by Dan Saks 26

A Bar Too High?

� C++ was once a “Better C”.

� Now, it’s touted as a “new language”. 

� That C++ is a “Better C” may be why C++ is as popular as it is.

� Ironically, many in the C++ community now discount this 

aspect of C++.

� I’m not suggesting that you teach C before teaching C++.

� I am suggesting that you teach C++ to working C programmers by 

starting with what they know and helping them reshape it.

51

A Bar Too High?

� Some, possibly many, projects stay with C because they can’t 

bridge the widening gap to C++.

� For many current C users, especially embedded developers, 

moving incrementally from C to C++ is probably much more 

practical.

52



Writing Better Embedded Software

Copyright © 2018 by Dan Saks 27

Other Pragmatic Concerns

� Legacy embedded code:

� Most of it is in C.

� It’s too valuable to discard.

� Learning schedules:

� For even experienced C programmers, learning most of C++ 

takes two or three work weeks.

� Few teams can block out that much time at once.

� They need to learn C++ in shorter sessions.

� Each course must cover something they can use right away.

53

A Legitimate Cause for Concern

� Earlier, I recommended using structures to represent memory-

mapped devices:

struct UART {
dev_reg ULCON;
dev_reg UCON;
dev_reg USTAT;
dev_reg UTXBUF;
dev_reg URXBUF;
dev_reg UBRDIV;

};

� Some programmers are reluctant to use these because they’ve 

been burned…

54



Writing Better Embedded Software

Copyright © 2018 by Dan Saks 28

A Legitimate Cause for Concern

� Using macros, you can place each register at its exact address: 

// UART0 registers
#define ULCON0  ((dev_reg *)0x3FFD000)
#define UCON0   ((dev_reg *)0x3FFD004)
~~~

� With a structure, the compiler might insert unused padding bytes

after any member.

� How do you prevent this, and do it cheaply?

55

Use Static Assertions

� You can use a static assertion to check that each structure

member is at the expected offset:

struct UART {
dev_reg ULCON;
dev_reg UCON;
~~~

};
static_assert(

offsetof(UART, UCON) == 4,

"UCON member of UART is at the wrong offset"

);

� Doing this for all the members usually isn’t necessary…

56



Writing Better Embedded Software

Copyright © 2018 by Dan Saks 29

Use Static Assertions

� You can just check that there’s no padding anywhere in the 

structure:

struct UART {
dev_reg ULCON;
dev_reg UCON;
~~~

};
static_assert(// no padding

sizeof(UART) == 6 * sizeof(dev_reg),

"UART contains extra padding bytes"

);

57

Further Constraining What You Can Do

� Thus far, code in this example compiles in either C or C++.

� However, using a structure for an entire device still leaves the

individual registers exposed to misuse.

� Rather, you can use a C++ class with private members to cut

down on improper register accesses…

58

Writing Better Embedded Software

Copyright © 2018 by Dan Saks 30

Using Classes is Even Better

class UART {
public:

void put(int c);
int get();
~~~

private: // even better
dev_reg ULCON;
dev_reg UCON;
~~~

};
~~~

com0->put(c);

59

Using Classes is Even Better

� How much more does it cost to use a class instead of a structure?

� Zero. Zip. Zilch. Nothing. Nil. Nada.

� The code is essentially the same size and speed either way.

� Sometimes, the C++ version is even faster.

60



Writing Better Embedded Software

Copyright © 2018 by Dan Saks 31

Not Yet at the Point of No Return

� By the way, converting back to C is still pretty easy:

com0->put(c);           // C++

UART_put(com0, c);      // equivalent C

61

62

A Mistrust of Abstractions

� Again, some embedded developers are very forward-looking.

� They’re eager for better methods and tools.

� However, many have a deep-seated mistrust of abstractions.

� This is somewhat surprising…

� They’re in the business of automating manual tasks.

� This mistrust shows in one reader’s response to a column I wrote 

on interrupt handling a while back.

� Here’s more or less what I explained…



Writing Better Embedded Software

Copyright © 2018 by Dan Saks 32

Interrupt Handling

� Most processors support devices that issue interrupts:

� A device notifies the processor by issuing an interrupt 

request.

� The processor responds by transferring control to:

� an interrupt service routine (ISR) or

� an interrupt handler.

63

Interrupt Handling

� Most processors:

� convert the requested signal into an interrupt number, and

� use that number to index into an interrupt vector table (IVT).

� The IVT is usually a table of function addresses in low memory.

64



Writing Better Embedded Software

Copyright © 2018 by Dan Saks 33

Registering a Handler

� For example, a typical processor supports interrupt numbers 

from 0 to 7, inclusive. 

� In that case, the IVT might be a table of eight 4-byte pointers 

starting at a low memory address, say 0x20.

� To prepare to handle interrupt request 6, you have to store a 

function address into location 0x20 + 6 × 4 = 0x38.

65

Registering a Handler

� Here’s how an EE colleague of mine first showed me to do it:

*(void **)0x38 = (void *)IRQ_handler;

� IRQ_handler is a function:

void IRQ_handler();

� The code worked in this case, but:

� It’s cryptic.

� Strictly speaking, it has undefined behavior…

66



Writing Better Embedded Software

Copyright © 2018 by Dan Saks 34

Undefined Behavior

� IRQ_handler is a function.

� When you use a function name in an expression, the compiler 

treats it like a pointer — a “pointer to function”.

� void * is a “pointer to data”.

� The cast-expression on the right converts a “pointer to function” 

into “pointer to data”:

*(void **)0x38 = (void *)IRQ_handler;

� The cast has undefined behavior.

67

A Better Way

� Rather, define an alias for a “pointer to handler” type, either:

typedef void (*ptr_to_handler)();   // C++03 or C++11
using ptr_to_handler = void (*)();  // C++11

� Using the alias simplifies the assignment:

*(void **)0x38 = (void *)IRQ_handler;       // before
*(ptr_to_handler *)0x38 = IRQ_handler;      // after

� In C++, a new-style cast is probably better:

*reinterpret_cast<ptr_to_handler *>(0x38) = IRQ_handler;

68



Writing Better Embedded Software

Copyright © 2018 by Dan Saks 35

An Even Better Way

� We can do better…

� Start by defining the interrupt numbers as symbolic constants:

enum interrupt_number {
reset,
undefined_instruction,
SWI,
prefetch_abort,
data_abort,
reserved,   // for future use
IRQ,        // "plain" device interrupts
FIQ         // "fast" device interrupts

};

69

An Even Better Way

� Define a pointer to the initial interrupt vector in the IVT:

ptr_to_handler *const IVT = (ptr_to_handler *)0x20;

� This is valid C as well as C++.

� Modern C++ programmers probably prefer:

auto const IVT
= reinterpret_cast<ptr_to_handler *>(0x20);

70



Writing Better Embedded Software

Copyright © 2018 by Dan Saks 36

An Even Better Way

� Either way, you can now install the handler using just:

IVT[IRQ] = IRQ_handler;         // OK in C or C++

� This is quite an improvement over the original:

*(void **)0x38 = (void *)IRQ_handler;

� What’s not to like?

71

A Mistrust of Abstractions

� Here’s how one reader responded…

� “Dan Saks thinks we should have tidy interrupt vector code like

IVT[IRQ] = IRQ_handler;

instead of crude stuff like

*(void **)0x38 = (void *)IRQ_handler;

I think I disagree…”

72



Writing Better Embedded Software

Copyright © 2018 by Dan Saks 37

A Mistrust of Abstractions

� [Me] You can’t make this stuff up…

“If you’re using a well-known commercial environment you trust, 

and they have a cute mechanism like the first example, perhaps. 

But if you’re rolling your own, I’d stick with the crude weird stuff 

— because it’ll be easier to figure out at debug time [my 

emphasis], which is the most important part particularly with 

interrupts.”

� Is this an extreme example?

� Yes. The entertaining ones usually are.

� However, it’s just the far end of a continuous spectrum.

73

The Mistrust Runs Even Deeper

� I still see programmers writing code like this:

if ((48 <= c) && (c <= 57))     // is c a digit? 

� This is better:

if (('0' <= c) && (c <= '9'))   // is c a digit? 

� This is even better:

if (isdigit(c))                 // probably faster, too

74



Writing Better Embedded Software

Copyright © 2018 by Dan Saks 38

Really Earning Trust

� Let’s look again at the interrupt vector example:

IVT[IRQ] = IRQ_handler;         // C or C++

� What could go wrong?

� You could accidentally use an invalid index:

IVT[42] = IRQ_handler;   // oops

� How can you prevent that cheaply and reliably?

75

An Even Better Way

� Recall our enumeration of the interrupt numbers:

enum interrupt_number {
reset,
undefined_instruction,
SWI,
prefetch_abort,
data_abort,
reserved,   // for future use
IRQ,        // "plain" device interrupts
FIQ         // "fast" device interrupts

};

� Let’s wrap this in a class…

76



Writing Better Embedded Software

Copyright © 2018 by Dan Saks 39

An IVT Class

� … with an operator[] that accepts only interrupt numbers:

class IVT {
public:

using pointer = void (*)();
enum number {               // was interrupt_number

begin, reset = begin, ~~~, IRQ, FIQ, end

};

pointer &operator[](number n) {

return table[n];

}

private:
pointer table[end - begin];

};

77

An IVT Class

� You can define a constant pointer to the IVT as either:

auto const the_ivt = reinterpret_cast<IVT *>(0x20);

� But then the indexing operation looks a little odd:

(*the_ivt)[IVT::IRQ] = IRQ_handler; 

� Using a reference is probably better…

78



Writing Better Embedded Software

Copyright © 2018 by Dan Saks 40

An IVT Class

� Notice the *operator in front of the cast:

IVT &the_ivt = *reinterpret_cast<IVT *>(0x20);

� This looks right:

the_ivt[IVT::IRQ] = IRQ_handler;    // yes!

� And it’s harder to screw up:

the_ivt[42] = IRQ_handler;    // compile error!

79

Parting Thoughts

� Embedded development environments and embedded software 

developers vary widely.

� However, the developers often share common characteristics:

� Greater concern for hardware issues.

� Often justified paranoia about resource scarcity.

� Wariness of new languages and techniques.

80



Writing Better Embedded Software

Copyright © 2018 by Dan Saks 41

Parting Thoughts

� To improve the development process:

� Learn to meet other software developers on their ground.

� Respect their expertise.

� Respect their concerns.

� Apply gentle, but steady, pressure to embrace improved tools 

and techniques.

81

Migrating from C to C++

� Focus on the parts of C++ that turn:

� potential run-time errors into compile-time errors

� run-time computations into compile-time computations

� In particular, focus on:

� enumerations

� (lvalue) reference types

� constand constexpr

� function and operator overloading

� classes as structures with:

� constrained behavior

� guaranteed initialization and destruction

82



Writing Better Embedded Software

Copyright © 2018 by Dan Saks 42

Thanks for Listening

83

Saks & Associates

� These notes are Copyright © 2018 by Daniel Saks.

� You are free to use them for self study.

� If you’d like permission to use these notes for other purposes, or 

for information on our training and consulting services, contact:

Saks & Associates

393 Leander Drive

Springfield, OH 45504-4906 USA

+1-937-324-3601

service@saksandassociates.com

84


