Writing Better Embedded Software

Writing Better
Embedded Software

Dan Saks

Meeting Embedded
November, 2018

Who Am I to be Speaking to You?

= Software developer from 1975 to 1981
* programming languages and tools

= University Instructor from 1982 to 1986
* programming languages
* data structures
* operating systems

= Software consultant (as Saks & Associates) from 1987 to 1989
* embedded systems
* systems analysis

Copyright © 2018 by Dan Saks

Writing Better Embedded Software

Who Am I to be Speaking to You?

= Secretary of the C++ Standards Committees from 1990 to 1997
= Co-author of the Plum Hall test suite for C++ from 1992 to 2005

= Contributing Editor/Columnist from 1990 to 2013
* The C/C++ Users Journal (now at drdobbs.com)
* Embedded Systems [Programming = Design]
* embedded.com
* others

» Teaching C++ since 1990
* to embedded software developers since 1993

Embedded Systems

= embedded system. n. A combination of computer hardware and
software, and perhaps additional mechanical or other parts,
designed to perform a dedicated function.

* from Embedded Systems Dictionary by Jack Ganssle and
Michael Barr. 2003, CMP Books.

= The job of a computer in an embedded system is to be something
other than a general-purpose computer.

Copyright © 2018 by Dan Saks

Writing Better Embedded Software

Sample Embedded Systems

= Consumer products

* cameras, audio/video players, game systems, home appliances,
watches

= Financial equipment
* ATMs, cash registers, credit card readers

= Industrial automation
* robots, production monitors

= Medical equipment
* biometric monitors, imaging equipment

Sample Embedded Systems

= Navigation equipment
* radar, guidance systems

= Computer peripherals
* printers, scanners, video boards

= Automotive subsystems
* braking, entertainment, navigation, steering, traction

Copyright © 2018 by Dan Saks

Writing Better Embedded Software

Sample Embedded Systems?

= Atablet or other handheld computer is not an embedded system.
* It has requirements not uncommon to embedded systems:
o power consumption
o heat dissipation
o communication bandwidth
* [t's really just a general-purpose computer in a small package.

= How about a mobile phone?
* Yes, if it’s just a phone.
* Probably not, if it's a smart phone.

Very Hard to Generalize

Embedded systems vary widely.

Broad statements rarely apply to all embedded systems.

Take generalizations with a grain of salt.
* This includes what I'm about to say.

Embedded designers are more likely to have to think about
things that other software developers usually don't...

Copyright © 2018 by Dan Saks

Writing Better Embedded Software

Possible Economic Concerns

= Development
* How soon until we get our hands on the first unit?
* What do we do until then?

= Production
¢ How much will it cost to build each unit?

= QOperating
e How much will it cost to run it?

Possible Physical Requirements

= Electrical
* Does it use too much power?
¢ Can it tolerate electrical noise?

= Ruggedness
* Can it tolerate getting dirty?
* Can it tolerate shock or vibration?

= Thermal
¢ Can it stand the cold or heat?

* Does it generate too much heat?

Copyright © 2018 by Dan Saks

Writing Better Embedded Software

Possible Performance Requirements

= Throughput
* Can it keep up with all the data coming in?
* How many responses can [get per unit of time?

= Responsiveness
* How soon until I get a result?
* Canlgetitin real time?

11

Possible Real Time Requirements

= “Hard” real time = any late response is intolerable.

* In some systems, a late response just makes the system
unsatisfactory or unusable.

* In the extremes, a late response could result in physical
damage, injury, or death.

= “Soft” real time = an occasional late response is tolerable.
* Too many late responses are not.

12

Copyright © 2018 by Dan Saks

Writing Better Embedded Software

The “Typical” Developer

= Most have college/university degrees.
* Often:
o Electrical Engineering (EE)
o Computer Engineering (CE)
o Mechanical Engineering (ME)

= Many have little or no formal training in software analysis,
design, and programming.

= Again, this is based on developers I've encountered, not a broad
statistical sampling.

13

The “Typical” Developer

= What about embedded developers with Computer Science (CS)
degrees?

* They used to be rare.

* They’re more common now, especially on larger projects.

= Nonetheless, the EE perspective still dominates the field...

14

Copyright © 2018 by Dan Saks

Writing Better Embedded Software

Working, and Working Better

= “It's very rare that you can program an embedded system
without understanding the circuitry and what it’s trying to
accomplish.”

—Mike Willey, hardware guy (CTO, Paragon Innovations)
= This matches my experience...
= “If I were staffing an embedded project, I'd hire a double-E first,
and me second.

= “The double-E will make it work; I'll make it work better.”

—Dan Saks, software guy (me)

15

Too Much for One Person

* Embedded development often requires a broad skill set,
including:
* hardware
* software
* mathematics
* human factors
* a bunch of other stuff

= [t often requires more technical knowledge than is reasonable to
expect from one person.

= Teamwork can be essential to success.

16

Copyright © 2018 by Dan Saks

Writing Better Embedded Software

Embedded Systems Are Different...

= Again, writing embedded software can be different from writing
desktop or server applications.

Embedded systems often have strict resource limitations, such
as:

* memory space and type
e communication bandwidth

* power consumption

They can have “hard” real-time requirements.

They often control hardware directly.

17

...But Not That Different

= Nonetheless...
= Most embedded programming is just plain programming.

* Good embedded programming is just good programming.

18

Copyright © 2018 by Dan Saks

Writing Better Embedded Software

Unnecessarily Poor Practice

= Unfortunately...

= Too many embedded developers use the differences from more
conventional programming to justify unnecessarily poor
practices.

= Here’s an example...

19

Direct Hardware Control

= Again, some, possibly many, embedded systems control hardware
directly.

= Software typically communicates with hardware devices through
device registers.

* Also known as:
o special function registers or
o special registers.

= Most modern processors use memory-mapped addressing...

20

Copyright © 2018 by Dan Saks

Writing Better Embedded Software

Memory-Mapped Addressing

= The architecture disguises the device registers to be addressable
like “ordinary” memory:

interrupt vectors
hysical memory (RAM, ROM, Flash
device registers

“Typical” address space

21

Traditional Register Representation

Hardware vendor libraries used to represent device register
addresses as clusters of related macros.

The registers often have the same type, such as:

#tdefine TMOD ((unsigned volatile *)0x3FF6000)
#tdefine TDATA ((unsigned volatile *)Ox3FF6004)

The sizes of the built-in scalar types can vary across platforms.

Many C programmers prefer using exact width types:

typedef uint32_t volatile dev_reg;

22

Copyright © 2018 by Dan Saks

11

Writing Better Embedded Software

Traditional Register Representation

// timer registers

#define TE ox1 // bit mask
#define TMOD ((dev_reg *)Ox3FF6000) // address
#tdefine TDATA ((dev_reg *)Ox3FF6004) // address

~rony

// UARTO registers
#tdefine ULCON® ((dev_reg *)Ox3FFDOOQ) // address
#tdefine UCON® ((dev_reg *)Ox3FFDO04) // ~~~

~rony

// UART1 registers
#tdefine ULCON1 ((dev_reg *)Ox3FFE00Q)
#tdefine UCON1 ((dev_reg *)Ox3FFE@Q®4)

~rony

23

Accessing Device Registers

= You can use these macros to fiddle with the registers:
*TMOD |= TE; // OK: set the timer enable bit

*UTXBUF@ = c; // OK: write c's value to UARTO

24

Copyright © 2018 by Dan Saks

12

Writing Better Embedded Software

Too Easy to Use Incorrectly

= Unfortunately, using these macros is very error-prone:

void UART put(dev_reg *stat, dev_reg *txbuf, int c);

~rony

UART_put(UTXBUF@, USTATO, c); // wrong order
UART_put(USTATO, UTXBUF1, c); // mismatching UART #s

UART put(TMOD, UTXBUF1, c); // wrong device
= The above calls will compile, but will have to be debugged.

= Wouldn't it be better if these calls simply didn’t compile?

25

An Unfortunate Mindset

= C programmers in general, and embedded developers in
particular, just accept that code with errors might still compile.

= This leads to a fatalistic attitude...

= Just get the code to compile, so you can get to the real work...
...debugging.

26

Copyright © 2018 by Dan Saks

Writing Better Embedded Software

A Different Focus on Tools

= Embedded developers rely heavily on run-time debugging tools
such as:

* debuggers

* in-circuit emulators
* logic analyzers

* protocol analyzers
* oscilloscopes

= Many are skeptical compile-time type checking and static
analysis can improve the situation.

= [n fact, designing a better interface is actually fairly easy...

27

Using Structures is Better

= Cluster the registers into structures:

struct timer {
dev_reg TMOD;
dev_reg TDATA;
dev_reg TCNT;

}s

void timer enable(timer *t);
uint32_t timer_get(timer *t);

= ['ll address legitimate concerns about structure storage layout a
little later.

28

Copyright © 2018 by Dan Saks

14

Writing Better Embedded Software

Using Structures is Better
= This, too, is better:

struct UART {
dev_reg ULCON;
dev_reg UCON;
dev_reg USTAT;
dev_reg UTXBUF;
dev_reg URXBUF;
dev_reg UBRDIV;

}s

void UART put(UART *u, int c);
int UART get(UART *u);

29

Easier to Use Correctly

= Using structures is better because it simplifies device interfaces.

* The caller no longer needs to know which specific registers a
given operation uses.

= You can pass all the registers for a device as a single unit:

UART *const com@ = (UART *)@x3FFDO0Q;

~rony

UART put(coma, c); // put c to a UART object

= And this is still just C.

30

Copyright © 2018 by Dan Saks

15

Writing Better Embedded Software

Harder to Use Incorrectly?

= Each structure type has a distinct type.

= Type checking can now catch accidents such as this:

UART *const com@ = (UART *)@x3FFDO0Q;
timer *const timer@ = (timer *)Ox3FF6000;

UART put(timere, c); // compile error?
UART put(com@, c); // OK: can put to a UART

= Maybe...

31

Harder to Use Incorrectly?

= This is an aspect where C and C++ differ.

= A C++ compiler will flag the first call as an error:

UART *const com@ = (UART *)@x3FFDooo;
timer *const timer@ = (timer *)Ox3FF6000;

UART put(timer9, c); // error in C++; warning in C
UART put(comd, c); // OK: can put to a UART

= A C compiler might issue a warning.

= [t probably will, but it doesn’t have to.

32

Copyright © 2018 by Dan Saks

16

Writing Better Embedded Software

But, But, But...

= “Butl can get better type checking with C by using a static
analyzer.”

= Butyou can’t get nearly as much with C as you can with C++.

33

Here’s Where We Are

= More embedded developers use C than anything else.
* By far.

= embedded.com’s annual reader survey asks participants to
complete this sentence:

“My current embedded project is programmed mostly in...”

34

Copyright © 2018 by Dan Saks

Writing Better Embedded Software

)
It's Mostly C, Some C++, and Not Much Else
70.0%
60.0%
——C
50.0%
- C++
40.0% Assembly
Java
30.0% .
--- CTrendline
20.0% --- C++ Trendline
--- Assembly Trendline
10.0%
---Java Trendline
0.0%
35

Developers and Their Tools

= In general, language tools for embedded systems lag behind
those for the desktop.

= For example:
e C wasn't widely available for embedded development until a

few years after it was established on the desktop.

* Vendors were so slow to implement aspects of C99 (e.g., VLASs),
C11 made them optional.

* Until this year, I still had clients who restricted their C++ usage
to C++03.

36

Copyright © 2018 by Dan Saks

Writing Better Embedded Software

Developers and Their Tools

= Why the lag?

= My speculation:

¢ The embedded software market doesn’t offer the economies of
scale of the desktop and server market.

= My observation:

* Embedded systems developers are more cautious about
embracing new software tools and methods.

37

I'm Not Making This Up

= From an email I just received last week:

* “I have heard many C programmers state the concern, ‘If I start a
project by moving to C++ and it doesn’t work out [ed. C++ gets
too complex], won’t be able to come back to C.””

38

Copyright © 2018 by Dan Saks

19

Writing Better Embedded Software

L.oss Aversion

= From psychology, behavioral economics and decision theory:
* Fear of loss > desire for gain

= Possibly:
* Fear of loss == 2 * (desire for gain)

= What to do?
* Be sensitive to this concern.

* Don’t get impatient with people, even if you think they’'re being
irrational.

39

On Being Persuasive

= “So the only way ... to influence other people is to talk about what
they want and show them how to get it.”

— Dale Carnegie: How to Win Friends and Influence People

40

Copyright © 2018 by Dan Saks

Writing Better Embedded Software

A Change in Thinking
= Moving from C to C++ requires a change in thinking.

= “Make interfaces easy to use correctly and hard to use
incorrectly.”

—Scott Meyers, The Most Important Design Guideline?

= C++ makes this more attainable by providing a more robust type
system...

41

Static Data Types

= For the most part, C and C++ use static data types.

= An object’s declaration determines its static type:

int n; // n is "[signed] integer"
double d; // d is "double-precision floating point"
char *p; // p is "pointer to character"

= An object’s static type doesn’t change during program execution.

= [t doesn’t matter what you try to store into the object.
* The type doesn’t change.

42

Copyright © 2018 by Dan Saks

Writing Better Embedded Software

What's a Data Type?

= Adata type is a bundle of compile-time properties for an object:

* size and alignment
¢ set of valid values

* set of permitted operations

43

What's a Data Type?

= On a typical 32-bit processor, type int has:

* size and alignment of 4 (bytes)

e values from -2147483648 to 2147483647, inclusive

o integers only

* operations including:
o ynary + - ! ~ & ++ --
o binary = + - * / % < > = I=

&

&&

44

Copyright © 2018 by Dan Saks

22

Writing Better Embedded Software

What's a Data Type?
= What a type can’t do is as important as what it can.

= An intcan’t do...
*i // indirection (as if a pointer)
i.m // member selection

i() // call (as if a function)

= This is a big difference between C++ and C:

* C++ will reject at compile-time questionable operations that C
will accept.

45

Implicit Type Conversions

= A type’s operations may include implicit type conversions to
other types:

int i;

long int 1i;

double d;

char *p;

1i = 1; // OK: convert int into long int

d=1i; // OK: convert int into double

d = p; // error: can't convert pointer into double

= Here, again, C++ will reject at compile time questionable
conversions that C will accept.

46

Copyright © 2018 by Dan Saks

Writing Better Embedded Software

The Real Change in Thinking

= Again, moving from C to C++ requires a change in thinking...

= [t's learning to use the type system to turn potential run-time
errors into compile-time errors.

* Fixing compile-time errors is easier than diagnosing and fixing
run-time errors.

* [t’s easy to ship a program with run-time errors.

* [t's much harder to ship a program that doesn’t compile.

47

Another Benefit

= Type information supports operator overloading:

char c, d;

int i, j;

double x, y;

c=d; // char = char

i=3j+ 42 // int = (int + int)

X =y + 42; // double = (double + int)

= Both C and C++ do this.

= But C++ lets you extend this to user-defined types.

48

Copyright © 2018 by Dan Saks

Writing Better Embedded Software

A Bar Too High?

= The C++ community may be making it harder for embedded
developer to embrace C++ by setting the bar too high...

49

A Bar Too High?

The “modern” approach to teaching C++:

* Use streams instead of FILEs.

* Use vectors instead of arrays.

* Use strings instead of null-terminated character sequences.

For non-C programmers, this is probably the best approach.

[spend a lot of time teaching C programmers who make a living
writing code for embedded systems.

This is not the approach I use.

50

Copyright © 2018 by Dan Saks

25

Writing Better Embedded Software

A Bar Too High?

= C++ was once a “Better C".
= Now, it’s touted as a “new language”.
= That C++ is a “Better C” may be why C++ is as popular as it is.
* [ronically, many in the C++ community now discount this
aspect of C++.

* I'm not suggesting that you teach C before teaching C++.

= [am suggesting that you teach C++ to working C programmers by
starting with what they know and helping them reshape it.

51

A Bar Too High?

= Some, possibly many, projects stay with C because they can’t
bridge the widening gap to C++.

= For many current C users, especially embedded developers,
moving incrementally from C to C++ is probably much more
practical.

52

Copyright © 2018 by Dan Saks

26

Writing Better Embedded Software

Other Pragmatic Concerns

= Legacy embedded code:
* Most ofitisin C.
e |t’s too valuable to discard.

= Learning schedules:

* For even experienced C programmers, learning most of C++
takes two or three work weeks.

* Few teams can block out that much time at once.
* They need to learn C++ in shorter sessions.
* Each course must cover something they can use right away.

53

A Legitimate Cause for Concern

= Earlier, | recommended using structures to represent memory-
mapped devices:

struct UART {
dev_reg ULCON;
dev_reg UCON;
dev_reg USTAT;
dev_reg UTXBUF;
dev_reg URXBUF;
dev_reg UBRDIV;

}s

= Some programmers are reluctant to use these because they’ve
been burned...

54

Copyright © 2018 by Dan Saks

Writing Better Embedded Software

A Legitimate Cause for Concern
= Using macros, you can place each register at its exact address:
// UARTO registers

#tdefine ULCON® ((dev_reg *)Ox3FFDo0Q)
#tdefine UCON®@ ((dev_reg *)Ox3FFDoo4)

~rony

= With a structure, the compiler might insert unused padding bytes
after any member.

= How do you prevent this, and do it cheaply?

55

Use Static Assertions

= You can use a static assertion to check that each structure
member is at the expected offset:

struct UART {
dev_reg ULCON;
dev_reg UCON;
}s
static_assert(
offsetof (UART, UCON) == 4,
"UCON member of UART is at the wrong offset"”
);

= Doing this for all the members usually isn’t necessary...

56

Copyright © 2018 by Dan Saks

28

Writing Better Embedded Software

Use Static Assertions

= You can just check that there’s no padding anywhere in the
structure:

struct UART {
dev_reg ULCON;
dev_reg UCON;

~rony

}s

static_assert(// no padding
s1zeof (UART) == 6 * sizeof(dev_reg),
"UART contains extra padding bytes"

);

57

Further Constraining What You Can Do

= Thus far, code in this example compiles in either C or C++.

= However, using a structure for an entire device still leaves the
individual registers exposed to misuse.

= Rather, you can use a C++ class with private members to cut
down on improper register accesses...

58

Copyright © 2018 by Dan Saks

29

Writing Better Embedded Software

Using Classes is Even Better

class UART {
public:
void put(int c);
int get();
private: // even better
dev_reg ULCON;
dev_reg UCON;

~rony

}s

~rony

como->put(c);

59

Using Classes is Even Better

How much more does it cost to use a class instead of a structure?

* Zero. Zip. Zilch. Nothing. Nil. Nada.

= The code is essentially the same size and speed either way.

= Sometimes, the C++ version is even faster.

60

Copyright © 2018 by Dan Saks

30

Writing Better Embedded Software

Not Yet at the Point of No Return

= By the way, converting back to C is still pretty easy:
como->put(c); // C++

UART put(comd, c); // equivalent C

61

A Mistrust of Abstractions

= Again, some embedded developers are very forward-looking.
* They’re eager for better methods and tools.

= However, many have a deep-seated mistrust of abstractions.
* This is somewhat surprising...
* They’re in the business of automating manual tasks.

This mistrust shows in one reader’s response to a column I wrote
on interrupt handling a while back.

= Here’s more or less what I explained...

62

Copyright © 2018 by Dan Saks

31

Writing Better Embedded Software

Interrupt Handling

= Most processors support devices that issue interrupts:

* A device notifies the processor by issuing an interrupt
request.

* The processor responds by transferring control to:
o an interrupt service routine (ISR) or
o an interrupt handler.

63

Interrupt Handling

= Most processors:
* convert the requested signal into an interrupt number, and
* use that number to index into an interrupt vector table (IVT).

= The IVT is usually a table of function addresses in low memory.

64

Copyright © 2018 by Dan Saks

Writing Better Embedded Software

Registering a Handler

= For example, a typical processor supports interrupt numbers
from O to 7, inclusive.

= [n that case, the IVT might be a table of eight 4-byte pointers
starting at a low memory address, say 0x20.

= To prepare to handle interrupt request 6, you have to store a
function address into location 0x20 + 6 x 4 = 0x38.

65

Registering a Handler

= Here’s how an EE colleague of mine first showed me to do it:

*(void **)@x38 = (void *)IRQ handler;

= TRQ handleris a function:

void IRQ handler();

= The code worked in this case, but:
* [t's cryptic.
* Strictly speaking, it has undefined behavior...

66

Copyright © 2018 by Dan Saks

33

Writing Better Embedded Software

Undefined Behavior

IRQ handleris a function.

When you use a function name in an expression, the compiler
treats it like a pointer — a “pointer to function”.

void *is a “pointer to data”.

The cast-expression on the right converts a “pointer to function”

into “pointer to data”:

*(void **)0x38 = (void *)IRQ handler;

The cast has undefined behavior.

67

A Better Way

Rather, define an alias for a “pointer to handler” type, either:

typedef void (*ptr_to_handler)(); // C++03 or C++11
using ptr_to_handler = void (*)(); // C++11

Using the alias simplifies the assignment:

*(void **)0x38 = (void *)IRQ handler; // before
*(ptr_to_handlLer *)0x38 = IRQ handler; // after

In C++, a new-style cast is probably better:

*reinterpret_cast<ptr_to _handler *>(0x38) = IRQ handler;

68

Copyright © 2018 by Dan Saks

34

Writing Better Embedded Software

An Even Better Way

= We can do better...

= Start by defining the interrupt numbers as symbolic constants:

enum interrupt_number {

reset,

undefined instruction,

SWI,

prefetch_abort,

data_abort,

reserved, // for future use

IRQ, // "plain" device interrupts
FIQ // "fast" device interrupts

}s

An Even Better Way

= Define a pointer to the initial interrupt vector in the IVT:

ptr_to_handler *const IVT = (ptr_to handler *)0x20;
= This is valid C as well as C++.

= Modern C++ programmers probably prefer:

auto const IVT
= reinterpret _cast<ptr _to handler *>(0x20);

Copyright © 2018 by Dan Saks

Writing Better Embedded Software

An Even Better Way

= Either way, you can now install the handler using just:

IVT[IRQ] = IRQ handler; // OK in C or C++

= This is quite an improvement over the original:

*(void **)@x38 = (void *)IRQ handler;

= What's not to like?

71

A Mistrust of Abstractions

= Here’s how one reader responded...

= “Dan Saks thinks we should have tidy interrupt vector code like
IVT[IRQ] = IRQ handler;
instead of crude stuff like
*(void **)0x38 = (void *)IRQ handler;

[think I disagree...

72

Copyright © 2018 by Dan Saks

Writing Better Embedded Software

A Mistrust of Abstractions

= [Me] You can’t make this stuff up...

“If you're using a well-known commercial environment you trust,
and they have a cute mechanism like the first example, perhaps.
But if you're rolling your own, I'd stick with the crude weird stuff
— because it'll be easier to figure out at debug time [my
emphasis], which is the most important part particularly with
interrupts.”

= [s this an extreme example?
* Yes. The entertaining ones usually are.

= However, it’s just the far end of a continuous spectrum.

73

The Mistrust Runs Even Deeper

= [still see programmers writing code like this:

if ((48 <= c) 8&& (c <= 57)) // is c a digit?
= This is better:

if (('@0" <=<¢) & (c <= '9")) // is c a digit?
= This is even better:

if (isdigit(c)) // probably faster, too

74

Copyright © 2018 by Dan Saks

37

Writing Better Embedded Software

Really Earning Trust

Let’s look again at the interrupt vector example:

IVT[IRQ] = IRQ handler; // C or C++
What could go wrong?

You could accidentally use an invalid index:

IVT[42] = IRQ handler; // oops

= How can you prevent that cheaply and reliably?

75

reset,

SWI,

reserved,
IRQ,
FIQ

}s

An Even Better Way

= Recall our enumeration of the interrupt numbers:
enum interrupt_number {
undefined instruction,

prefetch abort,
data_abort,

// for future use
// "plain" device interrupts
// "fast" device interrupts

= Let’s wrap this in a class...

76

Copyright © 2018 by Dan Saks

38

Writing Better Embedded Software

An IVT Class
= ... with an operator[] that accepts only interrupt numbers:
class IVT {
public:
using pointer = void (*)();
enum number { // was interrupt_number

begin, reset = begin, ~~, IRQ, FIQ, end
b
pointer &operator[](number n) {
return table[n];
}
private:
pointer table[end - begin];
}s

77

An IVT Class

= You can define a constant pointer to the IVT as either:

auto const the_ivt = reinterpret_cast<IVT *>(0x20);

= But then the indexing operation looks a little odd:

(*the_ivt)[IVT::IRQ] = IRQ handler;

= Using a reference is probably better...

78

Copyright © 2018 by Dan Saks

39

Writing Better Embedded Software

An IVT Class

= Notice the * operator in front of the cast:

IVT &the_ivt = *reinterpret_cast<IVT *>(0x20);

= This looks right:

the_ivt[IVT::IRQ] = IRQ handler; // yes!

= And it’s harder to screw up:

the_ivt[42] = IRQ handler; // compile error!

79

Parting Thoughts

= Embedded development environments and embedded software
developers vary widely.

= However, the developers often share common characteristics:
¢ Greater concern for hardware issues.
* Often justified paranoia about resource scarcity.
* Wariness of new languages and techniques.

80

Copyright © 2018 by Dan Saks

40

Writing Better Embedded Software

Parting Thoughts
= To improve the development process:

* Learn to meet other software developers on their ground.
o Respect their expertise.
o Respect their concerns.

* Apply gentle, but steady, pressure to embrace improved tools
and techniques.

81

Migrating from C to C++

= Focus on the parts of C++ that turn:
* potential run-time errors into compile-time errors
* run-time computations into compile-time computations

= [n particular, focus on:
* enumerations
* (lvalue) reference types
* constand constexpr
* function and operator overloading
* classes as structures with:
o constrained behavior
o guaranteed initialization and destruction

82

Copyright © 2018 by Dan Saks

Writing Better Embedded Software

Thanks for Listening

83

Saks & Associates

= These notes are Copyright © 2018 by Daniel Saks.
= You are free to use them for self study.

= [f you'd like permission to use these notes for other purposes, or
for information on our training and consulting services, contact:
Saks & Associates
393 Leander Drive
Springfield, OH 45504-4906 USA
+1-937-324-3601
service@saksandassociates.com

84

Copyright © 2018 by Dan Saks

42

